Технологии

Огнестойкость железобетонных конструкций

blank

Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, размеров конструкции, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона и его влажности и др.

В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило, за счет снижения прочности бетона при его нагреве, теплового расширения и температурной ползучести арматуры, возникновения сквозных отверстий или трещин в сечениях конструкций, а также в результате утраты теплоизолирующей способности.

Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости обычно находится в пределах R50- R90.

Такое относительно небольшое значение пределов огнестойкости изгибаемых железобетонных элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры.

Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности, поверхностных, наиболее прогреваемых слоев бетона, сопротивления рабочей арматуры при нагреве.

Для железобетонных колонн предел огнестойкости находится в пределах R90-R240.

Во время пожара защитный слой бетона замедляет прогрев арматуры до критической температуры. Поэтому одним из основных мероприятий по повышению пределов огнестойкости железобетонных конструкций является увеличение защитного слоя бетона у рабочей арматуры.

Толщину защитного слоя железобетонной конструкции можно регулировать также, если применять огнезащитные покрытия из других материалов: известково-цементные, гипсовые, вермикулитовые и другие покрытия.

При необходимости увеличения пределов огнестойкости железобетонных конструкций до значений более 150 мин можно рекомендовать следующие мероприятия:

  • увеличение толщины защитного слоя бетона до 50 мм и более;
  • облицовка огнезащитными материалами;
  • снижение пожарной нагрузки в помещении;
  • снижение механической нагрузки на конструкцию;
  • применение рабочей арматуры с более высокой критической температурой прогрева при пожаре.

Особенно необходимо обращать внимание на эти возможности регулирования огнестойкости строительных конструкций при использовании различных типов сталебетонных колонн, применяемых в высотном строительстве. Дело в том, что при прямом воздействии пожара на наружные металлические элементы такого рода конструкций несущая способность наружных металлических элементов сталебетонных конструкций будет исчерпана при температуре прогрева примерно 500 °С, т.е. через 9—12 мин после начала огневого воздействия пожара.

Колонны и балки с жесткой арматурой, расположенной в середине сечения, имеют значительно больший предел огнестойкости по потере несущей способности по сравнению с колоннами и балками, армированными стержневой арматурой, расположенной около обогреваемой поверхности.

В балках, при расположении арматуры разного диаметра и на разных уровнях, арматуру большего диаметра следует располагать дальше от обогреваемой при пожаре поверхности.

Исследования показали, что предел огнестойкости статически неопределимой железобетонной конструкции больше предела огнестойкости статически определимой конструкции на 75%, если площадь сечения арматуры на опоре, где действует отрицательный момент, больше, чем в пролете, в 1,25 раза; на 100%, если в 1,5 раза; на 125%, если в 1,75 раза и на 150%, если в 2 раза.

При решении практических задач, когда возникает необходимость в увеличении предела огнестойкости конкретной железобетонной конструкции, необходимо иметь в виду, что значения пределов огнестойкости, определенные путем проведения стандартных огневых испытаний, получены для случая воздействия на испытуемую конструкцию нормативной нагрузки и температурного режима, так называемого «стандартного» пожара.

Если в реальных условиях проектируемого объекта температурные воздействия при возможном пожаре и рабочие нагрузки будут отличаться от условий стандартного огневого испытания, то и огнестойкость этих конструкций будет отличаться от значений пределов огнестойкости, полученных при стандартных испытаниях.

Эти соображения также можно использовать для повышения огнестойкости конструкций. Например, если рабочая нагрузка на конструкцию вдвое меньше ее нормативного значения, то предел огнестойкости конструкции увеличивается в среднем на 25%.

В условиях пожара, испытаний строительных конструкций на огнестойкость, сушке и первом разогреве тепловых агрегатов, в ряде случаев наблюдается явление внезапной, взрывообразной потери целостности (ВПЦ) материалов прогреваемых конструкций. В ряде работ этот вид разрушения называется также «хрупким разрушением бетона».

Наблюдения реальных пожаров и огневых испытаний бетонных конструкций показывают, что явление ВПЦ бетона при пожаре выглядит следующим образом: уже на 9—15й мин огневого воздействия от обогреваемых поверхностей бетонных конструкций, с сильными звуковыми эффектами (хлопки, треск), начинают отлетать куски бетона на расстояние до 10—15 м.

Это приводит к быстрому уменьшению рабочего сечения конструкции, разрушению защитного слоя бетона, оголению рабочей арматуры конструкции, возникновению сквозных трещин и отверстий, резкому уменьшению предела огнестойкости всей конструкции, повышению риска быстрого наступления прогрессирующего разрушения всего объекта в целом.

Особенность явления взрывообразной потери целостности (ВПЦ) материалов строительных конструкций при пожаре состоит в его «аномальности». Аномальность этого явления в том, что оно проявляется внезапно при высокотемпературном прогреве конструкций, у которых ранее это явление в аналогичных условиях могло не наблюдаться.

В связи с этим возникновение и развитие ВПЦ в условиях пожара крайне нежелательно и требует правильного понимания механизма этого опасного для зданий явления, принятия специальных мер его диагностики и профилактики.

В работах обращалось внимание, что это явление в силу внезапности его возникновения на начальных стадиях развития пожара представляет большую опасность и по этой предметом специальных исследований как в России, так и за рубежом.

Правильное понимание механизма этого явления, возможность оценивать стойкость конструкций и зданий против прогрессирующего разрушения, с учетом возможности ВПЦ, имеют большое значение для обеспечения пожарной безопасности зданий и сооружений.

Изучение взрывообразного разрушения материалов строительных конструкций при воздействии пожара позволило выделить основные признаки и факторы, сопутствующие возникновению этого явления:

  • капиллярно-пористая структура материала конструкции;
  • наличие определенного, «критического» уровня начального влагосодержания материала конструкции, при заданной интенсивности теплового воздействия;
  • наличие определенной «критической» интенсивности теплового воздействия при заданном уровне начального влагосодержания материала;
  • послойный, периодически повторяющийся во времени характер потери целостности материала конструкции со стороны ее обогреваемых поверхностей, сопровождающийся разлетом осколков и звуковыми эффектами (хлопки, треск).

В свете исследований механизм взрывообразной потери целостности (ВПЦ) материалов строительных конструкций в условиях пожара может быть описан следующим образом.

Высокотемпературное воздействие пожара на строительную конструкцию, имеющую некоторый начальный уровень влагосодержания, приводит к возникновению по сечению конструкции в общем случае четырех зон, характеризуемых различным характером процессов тепло- и влагопереноса:

  • сухая зона материала конструкции, прилегающая к ее обогреваемым поверхностям, где влага в порах и капиллярах уже испарилась и удалилась за счет процессов тепло- и влагопереноса в другие зоны материала конструкции;
  • зона испарения влаги, в которой температура в порах и капиллярах материала достигла температуры испарения влаги, что приводит к возникновению избыточного давления пара в этой зоне и развитию процессов влагопереноса в сторону как обогреваемых, так и необогреваемых поверхностей конструкции;
  • зона повышенного влагосодержания материала конструкции, которая находится за зоной испарения влаги, в которой, в результате развития процесса влагопереноса из зоны испарения, влагосодержание материала начинает превышать начальное;
  • зона начального влагосодержания, в которой процессы влагопереноса еще не наблюдаются.

Развитие в прогреваемой конструкции процессов тепло- и влагопереноса приводит к возникновению в зоне материала, примыкающей к ее обогреваемым поверхностям, высоких перепадов температуры, давления, влагосодержания.

Именно в этой, относительно узкой зоне материала отмечается наибольшая скорость накопления нарушений, наибольшая их концентрация. Границами этой зоны, с одной стороны, являются прогреваемые поверхности конструкций, а с другой стороны — граница зоны испарения внутри прогреваемого тела.

По мере прогрева конструкции зона испарения влаги продвигается все дальше вглубь ее сечения. Сопротивление выходу пара через слой сухого материала, отделяющего зону испарения, с избыточным давлением пара, от нагреваемых поверхностей конструкций, будет расти. Это приводит к дальнейшему увеличению давления пара в зоне испарения, интенсификации процессов фильтрационного переноса влаги, росту градиентов температуры, влагосодержания, избыточного давления. В комплексе с воздействием механической нагрузки это приводит к резкой интенсификации накопления нарушений в структуре материала на границе сухой зоны и зоны испарения влаги и возникновению на границе этих зон максимальных значений степени разрушении материала.

Изучение механизма ВПЦ позволило предложить ряд мер по повышению стойкости материала конструкции против взрывообразной потери целостности в условиях воздействия пожара:

  • повышение уровня пожарной безопасности объекта путем обеспечения возможности ликвидации пожара на начальной стадии его развития;
  • недопущение и устранение возможных причин увеличения влагосодержания материала конструкции выше допустимой (за счет нарушения условий нормальной эксплуатации железобетонных конструкций — аварии систем водоснабжения, водоотведения, протечки, нарушение гидроизоляции конструкций и т.д.);
  • контроль расчетной относительной влажности воздуха в помещении;
  • устройство огнезащитных покрытий на поверхности конструкций, нагреваемых в условиях пожара;
  • применение специальных добавок в составе материала конструкции, повышающих его стойкость к ВПЦ.